Performance Comparisons of III-V and strained-Si in Planar FETs and Non-planar FinFETs at Ultra-short Gate Length (12nm)

نویسندگان

  • Seung Hyun Park
  • Yang Liu
  • Neerav Kharche
  • Mehdi Salmani Jelodar
  • Gerhard Klimeck
  • Mark S. Lundstrom
  • Mathieu Luisier
چکیده

The exponential miniaturization of Si CMOS technology has been a key to the electronics revolution. However, the downscaling of the gate length becomes the biggest challenge to maintain higher speed, lower power, and better electrostatic integrity for each following generation. Both industry and academia have been studying new device architectures and materials to address this challenge. In preparation for the 12nm technology node, this paper assesses the performance of the In0.75Ga0.25As of III-V semiconductor compounds and strained-Si channel nano-scale transistors with identical dimensions. The impact of the channel material property and device architecture on the ultimate performance of ballistic transistors is theoretically analyzed. 2-D and 3-D real-space ballistic quantum transport models are employed with band structure non-parabolicity. The simulation results indicate three conclusions: 1) the In0.75Ga0.25As FETs do not outperform strained-Si FETs, 2) triple-gate FinFETs surely represent the best architecture for sub-15nm gate contacts, independently from the material choice, and 3) The simulations results further show that the overall device performance is very strongly influenced by the source and drain resistances.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sub-100nm Non-planar 3D InGaAs MOSFETs: Fabrication and Characterization

InGaAs MOSFETs have been considered promising candidate for post-Si logic devices beyond 14nm technology node. To meet the increasing demand in electrostatic control at sub-100nm channel lengths, non-planar 3D structures have been introduced to the fabrication of InGaAs MOSFETs. In this paper, the fabrication and characterization of various non-planar 3D InGaAs MOSFETs have been demonstrated an...

متن کامل

Effectiveness of Strain Solutions for Next-Generation MOSFETs

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission....

متن کامل

A Planar, Layered Ultra-wideband Metamaterial Absorber for Microwave Frequencies

In this paper, an ultra-wideband metamaterial absorber is designed and simulated. The proposed absorber is planar and low profile. It is made of a copper sheet coated with two dielectric layers. Each unit cell of the metamaterial structure is composed of multiple metallic split rings, which are patterned on the top and middle boundaries of the dielectrics. The designed absorber utilizes differe...

متن کامل

High-Speed Planar GaAs Nanowire Arrays with fmax > 75 GHz by Wafer-Scale Bottom-up Growth.

Wafer-scale defect-free planar III-V nanowire (NW) arrays with ∼100% yield and precisely defined positions are realized via a patterned vapor-liquid-solid (VLS) growth method. Long and uniform planar GaAs NWs were assembled in perfectly parallel arrays to form double-channel T-gated NW array-based high electron mobility transistors (HEMTs) with DC and RF performance surpassing those for all fie...

متن کامل

Sub-100 nanometer channel length Ge/Si nanowire transistors with potential for 2 THz switching speed.

Ge/Si core/shell nanowires (NWs) are attractive and flexible building blocks for nanoelectronics ranging from field-effect transistors (FETs) to low-temperature quantum devices. Here we report the first studies of the size-dependent performance limits of Ge/Si NWFETs in the sub-100 nm channel length regime. Metallic nanoscale electrical contacts were made and used to define sub-100 nm Ge/Si cha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017